Moments of the first descending epoch for a random walk with negative drift

نویسندگان

چکیده

We consider the first descending ladder epoch τ = min { n ≥ 1 : S ≤ 0 } of a random walk ∑ ξ i , with i.d.d. summands having negative drift E − < . Let + max ( ) It is well-known that, for any α > finiteness implies and, λ exp that c where is, in general, another constant depends on distribution intermediate case, assuming g ∞ positive increasing function such lim inf x → / log and sup all Assuming few further technical assumptions, we show then ɛ δ ∈

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The overshoot of a random walk with negative drift

Let fSn; nX0g be a random walk starting from 0 and drifting to 1, and let tðxÞ be the first time when the random walk crosses a given level xX0. Some asymptotics for the tail probability of the overshoot StðxÞ x, associated with the event ðtðxÞo1Þ, are derived for the cases of heavy-tailed and light-tailed increments. In particular, the formulae obtained fulfill certain uniform requirements. r ...

متن کامل

Monte Carlo Algorithms for Finding the Maximum of a Random Walk with Negative Drift

We discuss two Monte Carlo algorithms for finding the global maximum of a simple random walk with negative drift. This problem can be used to connect the analysis of random input Monte Carlo algorithms with ideas and principles from mathematical statistics.

متن کامل

The Supremum of a Negative Drift Random Walk with Dependent Heavy{tailed Steps

Many important probabilistic models in queuing theory, insurance and nance deal with partial sums of a negative mean stationary process (a negative drift random walk), and the law of the supremum of such a process is used to calculate, depending on the context, the ruin probability, the steady state distribution of the number of customers in the system or the value at risk. When the stationary ...

متن کامل

A Random Walk with Exponential Travel Times

Consider the random walk among N places with N(N - 1)/2 transports. We attach an exponential random variable Xij to each transport between places Pi and Pj and take these random variables mutually independent. If transports are possible or impossible independently with probability p and 1-p, respectively, then we give a lower bound for the distribution function of the smallest path at point log...

متن کامل

An algorithm for tracking a random walk with unknown drift

In this paper we study the problem of tracking a random walk observed with noise when the variance of the walk increment is unknown. We describe a sequence of estimators of the random walk and we design an algorithm to choose the best estimator among all the sequence. We give also a bound for the mean square error of this estimator. Finally some simulations are presented and we compare our algo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistics & Probability Letters

سال: 2022

ISSN: ['1879-2103', '0167-7152']

DOI: https://doi.org/10.1016/j.spl.2022.109547